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The link between Taylor dispersion and irreversible thermodynamics pointed out by Camacho
[Phys. Rev. E 47, 1049 (1993)] is substantiated through the study of the thermodynamic functions
associated to Taylor dispersion. They are evaluated by two means. First, from the connection be-
tween the one-dimensional (1D) thermodynamic functions of extended thermodynamics — entropy,
entropy flux, entropy production, and chemical potential — and the constitutive equations describ-
ing the dynamics of the Taylor lux components; and second, from a purely thermodynamic analysis
in the three-dimensional (3D) space. Both independent procedures are shown to yield the same
results, thus confirming the physical entity of the Taylor thermodynamic functions. The different
interpretation of the same physical quantities given by 3D and 1D observers is thoroughly discussed.

PACS number(s): 47.60.+i, 05.70.Ln, 66.10.Cb, 05.60.+w

I. INTRODUCTION

The study of Taylor dispersion, originally the longitu-
dinal dispersion of a solute introduced in a solvent flow-
ing through a rectilinear duct, has deserved a great deal
of attention since Taylor and Aris published their early
works in the 1950s [1-3]. Some authors have generalized
its concept in order to apply it to a wide variety of phys-
ical situations, as in the generalized Taylor dispersion
[4, 5], which confers a unifying structure over transport
processes occurring in very different systems [6]. Others
have tried to extend the asymptotic Taylor dispersion to
shorter times [7-11]; and also pointed out has been its
relation to the elimination of fast modes [12, 13] and to
the theory of stochastic processes [14, 15].

Recently, we have shown the connection between Tay-
lor dispersion and the thermodynamics of irreversible
processes [16, 17]. Using the so-called extended irre-
versible thermodynamics (EIT) [18], we have proved that
the Taylor dispersion flux is an actual dissipative flux
of EIT. To that end, we proposed some generalized en-
tropy and entropy flux describing Taylor dispersion, and
imposed the positiveness of the entropy production in
order to get some constitutive equations for the Tay-
lor flux components. These equations were found to be
identical to the equations obtained from a hydrodynamic
analysis in the tridimensional space, and the thermody-
namic restrictions on the transport coefficients appearing
there were also satisfied. Therefore, in Ref. [16] the one-
dimensional thermodynamic functions were successfully
used as phenomenological tools for the obtaining of the
constitutive equations. In contrast, the aim of this work
is to find the thermodynamic functions from the compar-
ison of the corresponding quantities in three dimensions,
in a similar way to the derivation of macroscopic ther-
modynamic functions from the mesoscopic description of
the kinetic theory of gases (in the latter derivation, the
molecular degrees of freedom are integrated to keep only
the macroscopic quantities, whereas in the present work
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the transversal degrees of freedom are integrated to keep
only the longitudinal one). This comparison is not only
analytical, but also conceptual, stressing the different in-
terpretation of the thermodynamic functions given by a
one-dimensional (1D) observer, for which the transversal
coordinates do not exist, and a 3D observer that describes
the system in terms of them.

The paper has been organized as follows. In Sec. II,
we give a brief summary of the results of Ref. [16] which
are needed for the purposes of this paper. In the follow-
ing sections, the thermodynamic functions for Taylor dis-
persion are evaluated and contrasted with an analysis of
the corresponding quantities in the tridimensional space.
Section VII is devoted to some concluding remarks.

II. THERMODYNAMIC FUNCTIONS
FOR TAYLOR DISPERSION

In Ref. [16], we assumed the following generalized en-
tropy function describing Taylor dispersion close enough
to equilibrium

s(x,t) = Seqlz,t) — Z 3andn - Jn (1)
n=1

with s(z,t) the entropy per unit volume, scq(z,t) the
local-equilibrium term, and the latter one a purely
nonequilibrium contribution depending on the scalar co-
efficients o, and on the Taylor flux components, J, (z, t),
related to the Taylor flux through Jr = Y o0 | J,.

For the entropy flux, J*, we proposed

1 oo oo
8 _ -1
J*(z,t) = —uT J~§n;:1amn-(JmJn)—;5n P,-J,,

(2)

J = Jp+Jr being the total particle flux, namely the sum
of the longitudinal molecular flux, J,,(z,t), and the Tay-
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lor dispersion contribution, Jr(z,t); u(x,t) is the chemi-
cal potential of the solute, P, denotes the flux of J,,, and
an and é,, are, respectively, vectorial and scalar coeffi-
cients independent of the fluxes. The first term reads as
the classical contribution to an entropy flux supplied by
the usual thermodynamics of irreversible processes [19],
but the others are new; they are related with terms in the
constitutive equation for J,, which describe, respectively,
anisotropic dispersion and spatial correlations.

The introduction of (1) and (2) into the entropy bal-
ance equation leads to a bilinear form for the entropy
production where every flux is multiplied by its conju-
gate thermodynamic force. By imposing the positiveness
of the entropy production, o,, one obtains

o ]
0s(2,t) = KmJZ + > [KinJ? + K2n P7] (3)

n=1

(with K; some positive phenomenological coefficients)
and the constitutive equations [16]

_ Oc(z, t)
6n 0J,
P, = K, 0z’ (5)

. 0 —
Jn + (7'1:1 _'Yn) Jn + 5;1”2:17an"1

2 2
__Dade(mt) B o

. Oz T, Ox2

c(xz,t) denotes the section-averaged concentration, the
overdot indicates material time differentiation, and
D,y Ty Yny Ymn, and L, are transport coefficients related
to the phenomenological coefficients through the expres-
sions

1 Ou 1 Ou
Dp=—— 22, Dn= =,
™= KT 8c|yp "= KT ocly
(M
ap|™t
Tn = an DT E )
T
12 — .._672‘__ — _ﬁ':_ _ %mn
n - Kanzn b ’Y‘n - 2an7 ’Ymn - an .

(8)

For unidirectional flows between parallel plates separated
by a distance d, these coefficients take the following val-
ues in terms of the Fourier components of the velocity
field v,(t), and the molecular diffusivity D,, [16],

d? 2

™0 = Bnin?’ D, = 3vi7,, I%=Dpnr,,
(9)
v v
Yn = —E’ Ymn = (Ulm—n] + vm+n) . (10)
Un Um

In the following sections, we use all these expressions in
order to obtain the Taylor thermodynamic functions in
terms of the independent variables adopted by extended
thermodynamics, namely the local magnitude ¢(z,t), and
the dissipative fluxes J,,, Jn, and P,.

III. ENTROPY

As we have seen, the scheme of extended thermody-
namics introduces a generalized entropy for the descrip-
tion of states in the presence of mass fluxes. In this sec-
tion we analyze this entropy with more detail.

The evaluation of expression (1) for the entropy re-
quires the knowledge of the chemical potential of the
solute, u(x,t), both for the determination of the local
equilibrium entropy, and for the estimation of coefficients
0, which depend on Ou/dc|; as (7) shows. Let us
note that in the hydrodynamic analysis summarized in
Sec. II, the solute particles are considered not to interact
among them; this becomes apparent from the fact that
the molecular diffusivity D,,, was assumed to be constant,
which would not be true for interacting particles since
then there exists some dependence of D,, on the concen-
tration. Therefore, the chemical potential corresponding
to the ideal system under study has the same form as for
an ideal gas, namely

u(z,t) = kT Inc(z,t) + f(T), (11)

k being the Boltzmann constant, and f(7T) a functional
of the temperature without interest for the present prob-
lem, which is completely isothermal, so that we will not
consider it from now on.

According to the classical Gibbs equation at constant
energy and volume, ds = —uT~ldc, the integration of
(11) supplies the local-equilibrium contribution to the
entropy

Seq(z,t) = —kc(z,t) [lnc(x,t) — 1]. (12)

On the other hand, from (7), (9), and (11), coefficients
a,, take the values

ol 2 k2
_p19m 2 = 13
an =T dc|pv:  c(z,t)v2’ (13)
so that the entropy function (1) can be written as
s(c(z,t),{Jn}) = — kc(z,t) (Inc(z,t) — 1)
ko= 1
- — J2. 14
Gt 22 _

Let us now analyze the problem from a tridimensional
point of view. In 3D (two dimensions for flows between
parallel plates), the dispersion of the solute obeys a sim-
ple convection-diffusion equation

BC(QI, Y, t) 80(1:7 yvt) _ 2
T +v(y’t) B = DmV C(J),y,t)
(15)

C(z,y,t) is the solute concentration and v(y,t) a uni-
directional velocity profile; the coordinate y obviously
designates the transverse direction. Equation (15) arises
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from a Fickian dependence for the molecular flux, i.e.,
Jmol(z,y,t) = =D, VC, with V the bidimensional dif-
ferential operator. Since this flux is characterized by a
vanishing relaxation time, the Gibbs equation describing
the system is the local-equilibrium one

ds(z,y,t) = —p(z,y,t)T~1dC(z,y,1). (16)

Similarly as in (11), the chemical potential u(z,y,t)
has the form of the chemical potential for an ideal gas,
with the only difference that the coordinate space in the
present case is wider

u(z,y,t) = kT InC(z,y,t). (17)
Again, the integration of (16) leads to
s(z,y,t) = —kC(z,y,t) InC(z,y,t) — 1], (18)

and integrating over the section, one finds for the entropy
per unit volume in the position z

d
s(z,t) = —kA ii(iﬂg(z,y,t) nC(z,y,t)—1].  (19)

This is also the expression stemming from information
theory [20], where it is interpreted as the ignorance that
the knowledge of the function C(z,y,t) leaves about the
transverse distribution of the solute particles.

It is useful to define the quantity ¢(z,y,t)

b(z,y,t) = ch(w t) cos(nmy/d), (20)

with c,, the Fourier components of the concentration
C(z,y,t), so that C = ¢(z,t) (1 + ¢).

After introducing (20) into (19) and manipulating a
bit, one gets

s(z,t) = — ke(z,t) Ine(z,t) — 1]
—kca:t)/ Witrg)n(l+e). (21

The first term coincides with the local-equilibrium con-
tribution of (14). For ¢ < 1, that is to say, when trans-
verse inhomogeneities are small as compared to the av-
erage value, the expansion of the logarithm: In(1 + z) ~
z — x2 /2, supplies for the nonequilibrium term

d
5(2,1) — seq(@, ) = —%kc(w,t)/o %%2. (22)

It is interesting to note that this contribution is always
negative, as in (14), in agreement with the fact that the
entropy is a maximum in equilibrium. Finally, substitut-
ing Eq. (20) and using J,, = cnv,/2 [16], one obtains

4C(w 2 Zc Z —ﬁJn. (23)

We have thus proved that the expressions coming from
both procedures, (14) and (23), coincide, although the
interpretation of the entropy given in each case is quite
different. In the first case, the approach is completely 1D,
and the entropy is expressed in terms of one-dimensional

8§ — Seq =

quantities, ¢(z,t) and J,(z, t); nevertheless, in the second
one, being tridimensional, s(z, t) is regarded either as the
sum of the entropies of the 3D fluid elements or, in the
context of information theory, as a measure of the order
of the solute distribution across the section.

IV. ENTROPY FLUX

In Sec. II, we employed an expression for the entropy
flux which added two new terms to the classical one.
The introduction of such terms proved to be useful in
obtaining the constitutive equations for J,(z,t). The
aim of this section is to establish the connection between
these terms and the entropy flux defined in three dimen-
sions. This kinetic comparison bears special interest for
the term related to the transient anisotropy because this
is the first time that a contribution of this type is in-
cluded in the formalism of extended thermodynamics.

In order to compare with the tridimensional analysis
we evaluate each term separately.

The introduction of the chemical potential (11) in Eq.
(2) for the entropy flux gives for the classical contribution
simply

Ji = —klnc(z,t) J(z,t). (24)

For the term related to the anisotropy of the solute dis-
persion, expressions (8), (10), and (13) yield

k b Um+n + vm—-nJ

J& = — m - JIn- 25
II ZC(m,t) ( )

m,n=1 UmUn

The evaluation of the coefficients §, appearing in the
last term of (2), the one associated with the spatial cor-
relation between fluxes, is immediate since they are not
independent of the a,’s. Since P, are the fluxes of J,,

extended thermodynamics imposes the relation 6, = a,,
[18]. Therefore, from (13), we have

Jin = 2 26

II1 — C((L’ t) g _"21 ( )

For further use, we notice another consequence of the
relation é,, = a,. With the help of expressions (8) and (9)
for lz, one finds K, = a,/D,,, so that the constitutive
equation for P,, Eq. (5), can be written simply as

oJ,
-D, == 27
™ Oz (27)
On the other hand, in the tridimensional space, the =
component of the entropy flux is written as

P, =

J2(z,y,t) = s(z,y,t)v(y) — plz,y, )T I3 (28)

When integrated over the section, we thus have an en-
tropy flux linked to molecular diffusion

d
d —1 7z
Jhor(z,t) = —/0 %;}.(:L’,y,t)T 1Jm01($,y,t) (29)

and the contribution of convection
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d
Jp = _k/o %'{C[lnC —1]v(y). (30)

(l) mol
ing use of JZ | =
calculations yield

d
dy dc(z,t)
mol k (A 71110(:1:, y,t)) DMT

(1' )¢

After introducing (17) into (29), and mak-
—D,,0C/0z and C = ¢(1 + ¢), some

+kD,, / W 1n(1 4 ¢) 2202 (31)
The first term on the right-hand side can be written as
—p(z, )T~ Im(z, t) if we identify

d
0

which expresses the chemical potential in the reduced
coordinate space as the section average of the chem-
ical potential in the complete space. Retaining only
up to quadratic terms in nonequilibrium quantities en-
ables one to take the zero-order approximation for u(z, t):
u(z,t) ~ kT Inc(z,t) (i.e., the local-equilibrium chemical
potential), so that we recover the classical contribution
of molecular diffusion to the entropy flux explicit in (24).

With the help of J,, = cn,v,/2 and (27), the second
term is written up to second order as

> 3cn k >, 2
2c(m t) Z =— ] > EJn-Pn. (33)

C(.’E,t n=1
This is prec1sely the contribution Ji of Sec. II, Eq. (26).
(ii) J%. The convective entropy flux, Eq. (30), can be
easily manipulated to yield

J# =—klne(z,t) Jr

d
~ke(et) [ L1+ H R +0) - o). ()

The first term provides the Taylor contribution to the
term J{ described in (24). This is quite remarkable.
Similarly as the mass flux in 3D has two contributions
— the convective and the dissipative ones — but in 1D
the first one is seen as dissipative, with the entropy flux
occurs the same, namely, the convective term (30) con-
spires to give a contribution to J* which has the form of
a typical entropy flux associated with a dissipative flux,
ie., —u(z, )T~ J(z,t).
On the other hand, for ¢ < 1, one can approximate

(1+¢)In(1+ ¢) — ¢ ~ ¢?/2

so that the second term in (34) reduces to

d
oD | Demn o)

k o= Um+tn + Um—n
= —_—Jm - Jn (35
2C((L‘, t) mZn;I UmUn m ( )

which corresponds exactly with Jfj, Eq. (25). As ex-
pected, the contribution of the entropy flux associated
with anisotropic dispersion (as seen from 1D) is related
to the convection of the entropy contained in the tridi-

mensional fluid elements.

We have thus shown that the same expression for the
entropy flux is obtained through a classical thermody-
namic formalism in three dimensions and extended ther-
modynamics in one dimension for situations close enough
to equilibrium.

V. ENTROPY PRODUCTION

In Sec. II, we saw that extended thermodynamics pro-
vides for Taylor dispersion an entropy production which,
besides the dissipation associated with molecular diffu-
sion, J(z,t), also contains some contributions of J,
and P,. Our present goal is to obtain the tridimensional
counterpart of these terms.

The coefficients K, and K, appearing in (3) are di-
rectly obtained with the use of (7) and (9); from the latter
section, K2, = an /D, so that, with the aid of (13) one
finally gets

o. = k —1J2
s C(.’L‘ t) m m

2 2 2
Z c(x t) [v 2Tn Int v,lemP"] '
(36)

On the other hand, from the classical expressions for
the entropy and the entropy flux in 3D, Egs. (18) and
(28), it obviously drops a usual entropy production

1
os(z,y,t) = ﬁ“]xznol(mﬁy’t)7 (37)
where the dissipative coefficient k,, is linked to D,, anal-
ogously as K, in (7)

1 dp(z,y,t)
D,, T 9C(z,y,

1 1
T DmT C(.’l), y,t)‘

ko = (38)

Therefore, one can write o,(x,t) as
o =0n [ Y oy
| (2C@u.))*
oz

+ (780(;1’;”“)2]. (39)

After introducing ¢ and approximating up to second-
order terms, one immediately arrives at

ou(o,t) = clszf) Od dy [ (ac(;;twy
(52

4+ KD (M)z. (40)

c(z,t) oz

The last term of this expression coincides with the en-
tropy production related to J,,(z,t) in (36).
From Eq. (20) for ¢ and Eq. (27) for P,, we can
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directly evaluate
kD,, [®dy (8c(z,t)¢)> EoS 2,

= = — P2, 41
c(a:,t)/o d( oz c(w,t);vﬁ " (41)

This term coincides with the contribution of P, to the
entropy production of EIT, Eq. (36). We observe that
this term plays the role of a correction to the dissipation
embodied in [8¢(z,t)/0z]* with the origin in the nonuni-
formity of the solute distribution along the section.

Finally, the last integral can be easily manipulated to
give

kD,, [®dy (8c(z,t)¢)>
c(m,t)/oi( dy )

which is the entropy production related to the Taylor flux
components, J,,. We thus realize that the dissipation vin-
culated to the Taylor flux proceeds from the transverse
molecular diffusion.

mt)zv &

(42)

VI. CHEMICAL POTENTIAL

In classical irreversible thermodynamics, according to
the local-equilibrium hypothesis, the equations of state
in nonequilibrium situations have the same form as in
equilibrium. In contrast, extended thermodynamics sup-
plies equations of state containing purely nonequilibrium
terms added to the local-equilibrium ones. The present
problem, described by one local variable, ¢(z, t), provides
only one equation of state

_ Os(x,t)

— -1 —
u(z, t)T dc(z,

(43)

The subindex J,, indicates that in the differentiation the
fluxes are kept constant. With the help of (14), this
expression yields

oo

kT 1,
I A

The first term is the local-equilibrium contribution (11),
and the second one is a purely nonequilibrium term. In
Ref. [21], the effects of the nonequilibrium corrections to
the chemical potential in the phase diagram of polymer
solutions in the presence of shear are analyzed.

On the other hand, during the study of the entropy
flux in the three-dimensional space, we obtained expres-
sion (32) for the chemical potential. Introducing ¢ and
keeping up to second-order terms, one has

ztzzvzn (45)

We observe the same result as in (44), obtained from
extended thermodynamics, which can thus be seen as the
lowest-order terms of an expansion of the section average
of the tridimensional chemical potential.

u(e(z, 1), {Jn}) = p(c(z,1))

u(z,t) = kT lnc(z,t)

VII. CONCLUDING REMARKS

In Ref. [16] we showed that a unidimensional observer
could describe exactly the longitudinal dispersion of a so-
lute in a tube along all the time span; this is quite surpris-
ing since for such an observer no transversal notion makes
any sense, so that the concepts of transverse diffusion and
velocity field have no meaning. Therefore, although both
the one-dimensional and the three-dimensional observers
find the same equations for the dynamics of the fluxes,
the concepts and quantities used by each one are quite
different. While a 3D researcher expresses the solute dis-
persion as a combination of molecular diffusion and the
convection of the solvent embodied in the velocity field,
the 1D scientist talks in terms of dissipative fluxes, one
flux related to mere molecular diffusion and the other
related to convection; consequently, a mass flux which
is seen as convective in 3D is regarded as dissipative in
1D. This dissipative flux, however, is not inserted in the
classical thermodynamics of irreversible processes, but is
incorporated in extended irreversible thermodynamics.

Similarly as the mass fluxes have different interpreta-
tions in one and three dimensions, the thermodynamic
functions are regarded differently by 1D and 3D ob-
servers. For a 1D researcher these magnitudes are linked
to the dynamics of the fluxes, with no reference to
transversal coordinates, but for a 3D observer they are
averages over the tube section of the corresponding tridi-
mensional quantities. While in 1D, this required the use
of extended thermodynamics in order for the entropy pro-
duction to be positive definite, in 3D the thermodynamic
formalism is the classical one, because the molecular dif-
fusion flux is characterized by a vanishing relaxation time
at the time scales under study.

For a 1D observer, the contribution of the fluxes to
the generalized entropy is connected to a relaxation term
in the constitutive equations for the Taylor flux compo-
nents. For a 3D observer, it designates some ordering of
the solute along the section.

With respect to the entropy flux, in 3D it contains two
contributions, the diffusive one, related to the molecu-
lar diffusion flux, and the convective one. The section
average of the first term supplies what in 1D is seen as
the diffusive contribution linked to the one-dimensional
molecular flux, and the term containing the fluxes P,.
The convective term, on the other hand, has the re-
markable property of providing a term with exactly the
same form as the classical expression for an entropy flux,
namely —uT~!'Jr, with the mass flux being the Taylor
flux: From the convective contribution it also drops the
anisotropic term of the 1D entropy flux, which turns out
quite natural since the anisotropy of the solute dispersion
has its origin in the velocity profile.

In three dimensions, the entropy production is given
by the molecular diffusion flux; one can distinguish two
terms, the one corresponding to the molecular diffusion
in the flow direction, and the transverse contribution.
In 1D, extended thermodynamics proposes a contribu-
tion for each one-dimensional flux Jy,01, J,, and P,. The
term in J,, expresses the dissipation related to transverse
molecular diffusion, which seems quite natural because
the Taylor flux, ie. Jr = > 00 Jn, originates in the
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combination of transverse diffusion and the velocity field.
The contributions of Jy,o) and P, indicate the dissipation
linked to the longitudinal component of the 3D molecu-
lar flux; the term in J,,, describes the contribution of
the zero-order mode, and the terms in P,, the ones of the
other transverse modes.

In summary, the successful comparison of the Taylor
thermodynamic functions with the analysis in the three-
dimensional space provides another evidence of the state-

ment given in Ref. [16], namely that the Taylor flux is
an actual dissipative flux of extended thermodynamics.

ACKNOWLEDGMENTS

This work has been financially supported by the Span-
ish Ministry of Education and by the Direccién General
de Investigacion Cientifica y Técnica of the Spanish MEC
under Grant No. PB-90/0676.

* Electronic address: iftgl@cc.uab.es

[1] G.I. Taylor, Proc. R. Soc. London, Ser. A 219, 186
(1953).

(2] G.I. Taylor, Proc. R. Soc. London, Ser. A 223, 446
(1954).

[3] R. Aris, Proc. R. Soc. London, Ser. A 235, 67 (1956).

[4] H. Brenner, PhysicoChem. Hydrodyn. 1, 91 (1980).

(5] H. Brenner, PhysicoChem. Hydrodyn. 3, 139 (1982).

(6] I. Frankel and H. Brenner, J. Fluid Mech. 204, 97 (1989).

(7] P.C. Chatwin, J. Fluid Mech. 43, 321 (1970).

[8] W.N. Gill and R. Sankarasubramanian, Proc. R. Soc.
London, Ser. A 316, 341 (1970).

[9] W.N. Gill and R. Sankarasubramanian, Proc. R. Soc.
London, Ser. A 322, 101 (1971).

[10] R. Smith, J. Fluid Mech. 105, 469 (1981).

] R. Smith, J. Fluid Mech. 182, 447 (1987).
R. Smith, J. Fluid Mech. 175, 201 (1987).
W.R. Young and S. Jones, Phys. Fluids A 3, 1087 (1991).

W N =

J. Camacho, Phys. Rev. E 47, 1049 (1993).

J. Camacho, Phys. Rev. E 48, 310 (1993).

D. Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog.

Phys. 51, 1105 (1988).

[19] S.R. de Groot and P. Mazur, Nonequilibrium Thermody-
namics (Dover, New York, 1984).

[20] A. Kintchin, Mathematical Foundations of Information
Theory (Dover, New York, 1963).

[21] M. Criado-Sancho, D. Jou, and J. Casas-Vazquez,

Macromolecules 24, 8234 (1991).

]
|
] C. Van Den Broeck, Physica A 168, 677 (1990).
]
]
]



